2-CYANO A^3 PIPERIDINES¹ II : TOTAL SYNTHESIS IN THE $(±)$ ERVITSINE α -ACYLINDOLE ALKALOID SERIES

M. HARRIS, D.S. GRIERSON, C. RICHE and H.-P. HUSSON \overline{x}

Institut de Chimie des Substances Naturelles C.N.R.S. F 91190 Gif/Yvette

Summary : The first total synthesis in the ervitsine α -acylindole alkaloid series was achieved via two successive nucleophilic substitutions on the relevant 2-cyano Δ^3 piperidine by an indole moiety.

Ervitsine 16 an α -acylindole alkaloid of a novel type was isolated in these laboratories' from the root barks of <u>Pandaca boiteaui</u> (Apocynaceae). The known biological activity of related α -acylindole alkaloids coupled with the low abundance of 16 in the plant (0.006 g/kg) prompted us to undertake synthetic investigations in the ervitsine series. We describe herein the preparation of the α -acylindole 15, representing the first synthesis of the ervitsine skeleton.

We have recently discussed¹ the preparation and the synthetic potential of 2 -cyan Δ^3 piperidines of type 1 and their ability to act as potential and masked dihydropyridinium salts. These compounds react with high regioselectivity with nucleophiles at the C-2 (4) or $C-4$ (2) positions depending on the nature of the nucleophile. On the other hand formation of an ambident anion by treatment of 1 with n-BuLi generates a species in which "umpolung" of the normal reactivity is achieved and which reacts with electrophiles at the $C-2$ (6) or $C-4$ (5) positions (scheme 1). -

One of the many features of the versatile synthons 1 is their ability to undergo successive functionalisation at $C-4$ followed by 1,2 nucleophilic addition to give intermediates of type $\underline{3}$ (scheme 1). This type of reactivity suggested an approach to the skeleton of ervitsine 16 , which can be regarded as a piperidine bearing indolyl substituents at the $C-2$ and $C-4$ positions \star .

* C-5 and C-15 positions using the ervitsine 16 numbering which will be used for the synthetic intermediates throughout this paper.

The extrapolation of the reaction of sodium methylacetoacetate with l^1 (R=Et) in the presence of silver salt¹ to that of the sodium salt of the B-ketoester 10 with 1 (R=Me) under similar conditions offered an attractive possibility for the formation of the C-14, C-15 bond of the required skeleton, at the same time generating an electrophilic carbon necessary for subsequent cyclisation onto the β carbon (C-7) of the indole nucleus.

The B-ketoester 10 was prepared efficiently via the routes shown in scheme 2. The mixed anhydride 8, prepared from the reaction of 1-methylindole 2-carboxylic acid 7 with mesylchloride in the presence of triethylamine, was reacted with sodium dimethylmalonate or methyllithioacetate in THF4toafford **the** products 9 (81 X) and 10 (72 X) respectively. Clean monodecarboxylation of <u>9</u> into <u>10</u> was achieved on its refluxing in 1.5 % aqueous THF with ba-
sic alumina⁷ (Y : 87 %).

Reagents : I, MeSO₂C1, (Et)₃N, THF, -50°, 2 h ; II, sodium dimethylmalonate, THF 20° , 1 h ; III, methyl lithioacetate, THF $-50^\circ + 0^\circ$, 1 h ; IV, 8 g basic alumina Merck per mmole product, $1.5 \times aq$. THF, 4 h, Δ .

Scheme 2

Addition of the sodium salt of 10 to 1 (R=Me) in the presence of AgBF4 led to formation, in 91 % yield, of the enamines $\overline{1}$ l as an approximately I : I mixture of isomers⁸. The unstable enamines 11 could be transformed into a crystalline derivative $12a^3$ on reaction with NaCN at pH $_{\rm H}$ in a two phase system'. It was observed that on attempted isola of the minor isomer 12b by preparative tic a mixture of 12a and 12b was always obtained. Under these conditions it is unlikely that epimerisation α to the nitrile occurs thus l2a and 12b are likely to be epimers at C-14. The fact that one α-amino nitrile
isomer predominates indicates that epimerisation must occur at C-14 during the prepara tion of 12 and that the cyanide ion is introduced in a stereoselective manner into the
iminium salt 13 . Cyclisation of 11 or 12 to give 14 was achieved on their refluxing in toluene in the presence of 11 or 12 to give 14 was achieved on their reflu-TsOH (Y: 65 % from 11, 75 % from 12). The assignment of the structure of 14 to the product was made unequivocally on the basis of its spectral properties $10,12$. Decarboxylation of 14 afforded 15 cleanly (95 % yield)¹¹. The small coupling constant between the protons \overline{b} orne by $C-5$ and $C-16$ observed for 14 and 15 evidences their equatorial-equatorial relationship. Moreover the bridged system implies the substituents at $C-5$ and $C-15$ should be cis diaxial. The unexpected axial position for the methyl group at $C-16$ can be explained by a necessary ring flip at the stage of the iminium salt $\frac{13}{5}$ (axial protonation of $\frac{11}{5}$ in order to allow the approach of the C-7 and C-5 centers.

Reagents : I, NaH, THF, 20°, 1 h ; II, 1,3-dimethyl 2-cyano Δ^3 piperidine, AgBF₄ THF, 1 h ; III, NaCN, CH_2Cl_2 , H_2O , citric acid, 1 h ; IV, TsOH, toluene, \wedge 22 h : V, H₂O, AcOH, H₂SO₄(10, 10, 1), 5 h. Δ 22 h; V , H₂O, AcOH, H₂SO₊(10, 10, 1),

Significant 13C NMR shifts are given in the scheme.

Scheme 3

The proposed relative configurations for 15 were confirmed by X-Ray diffraction as shown on the figure. Crystals are monoclinic, space group $P21/n$, $a = 13.802(3)$, b = 7.097 (4), c = 15.326 (6) A, β = 92.3° (1), Z = 4. The final R value is 0.99 for 734 observed reflexions.

The high yield stereoselective synthesis described underlines the utility of the 2-cyano Λ^3 piperidine synthons.

Acknowledgements : M.H.andD.S.G.thank the C.N.R.S. for financial support and M. P. POTIER for his continuing interest and encouragement. We are indebted to Dr. S. XAN (Institut d'Electronique Fondamentale - 91400 ORSAY) for 240 and 400 MHz NMR spectra.

References and Notes

- 1. Part I see : D.S. GRIERSON, M. HARRIS and H.-P. HUSSON, 3. Am. Chem. sot., 1980, 102, 1064.
- 2. M. ANDRIANTSIFERANA, R. BESSELIEVRE, C. RICHE and H.-P. HUSSON, Tetrahedron Lett., 1977, 2587.
- 3. Y. PICHON and M.-P. SAUVIAT, J. Physiol. London, 1978, 280, 29.
- 4. Thereactionof mixed sulphonic anhydrides with anions will be published independently : M. HARRIS and H.-P. HUSSON.
- 5. 9 : mp 137 (EtOAc) ; MS m/e (relative intensity) : M ²⁸⁹ (25) 175 (100) 158 (100) ; TH NMR (CDCl₃, 60 MHz, TMS $\delta = 0$) : 3.8 (6H, s, CH₃O), 4.05 (3H, s, CH₃N), 5.37 (1H, s, CH) ; $Y = 81$ % from the acid 7.
- 6. 10 : mp 106-106.5°(EtOAc) ; MS m/e (relative intensity) : M⁺ 231 (30), 158 (100) ; $\overline{1H}$ NMR (CDC1₃, 400 MHz, TMS $\delta = 0$) : 3.7 (3H, s, CH₃0), 3.9 (2H, s, CH₂), 4.05 (3H, s, CH₃N), 7.35 (1H, s, indole β proton) ; Y = 72 % from acid $\frac{7}{1}$.
- 7. Cf. A.E. GREEN, A. GRUZ and P. CRABBE, Tetrahedron Lett., 1976, 2707. Using THF instead of dioxane as solvent avoided bis-decarboxylation. We wish to thank Dr. Y. TROUIN for his help on this reaction.
- 8. 11 : sensitive amorphous product ; MS m/e (relative intensity) : M^+ 340 (30), $\overline{110}$ (100) ; ¹H NMR (CDC1₃, 60 MHz, TMS $\delta = 0$) : 2.52, 2.54 (3H, 2s, C<u>H</u>₃N-4), 3.65 (3H, s, C<u>H</u>₃O), 4.05 (3H, s, C<u>H</u>₃-N-1), 4.35, 4.5 (1H, 2d, J = 4 Hz, C<u>H</u>-CO), 5.6, 5.7 (1H, $\overline{2}$ s, N-4-CH =).
- 9. 12a : mp 161-162'(EtOAc) ; MS m/e (relative intensity) : M+' 367 (5) 110 (100) ; $F_{\rm H}$ NMR (CDC1₃, 400 MHz, TMS δ = 0) : 1.2 (3H, d, J = 7 Hz, CH₃-CH), 2.4 (3H, s, $\texttt{CH}_3\texttt{N-4}$), 3.73 (3H, s, $\texttt{CH}_3\texttt{O}$), 3.77 (1H, d, J = 4 Hz, \texttt{CHCO}), 4.1 (3H, s, $\texttt{CH}_3\texttt{N-1}$) ; $Y = 80$ %. The stereochemistry as depicted for 12a is inferred from the observation of an axialequatorial coupling constant (J = 4 Hz) between the C-5 and C-16 protons and the knowledge that the substituents at C-15 and c-16 are trans (by extrapolation from 15). This implies axial protonation of 11 (usual in cyclic enamines) followed by attack of nitrile on the face opposite that of protonation.
- 10. 14 : mp 160-162'(MeOH) ; MS m/e (relative intensity) : M" 340 (100) ; 'H NMR $\overline{CD}Cl_3$, 400 MHz, TMS $\delta = 0$) : 1.53 (3H, d, J = 7 Hz, CH_3CH), 2.0 (3H, s, CH_3-N-4), 3.7 (3H, s, CH₃O), 3.8 (1H, d, J = 4 Hz, C<u>H</u>CO), 3.98 (3H, s, C<u>H</u>₃-N-1), 4.3 (1H, s, C-5H), no C-7H.
- 11. $\underline{15}$: mp 179-180° (MeOH) ; MS m/e (relative intensity) : M $\overline{282}$ (100), IR (CHCl₃) 1 630 cm $^{-1}$; UV λ $_{\rm max}^{\rm EtoH}$ (qualitative) 236, 318 nm ; ¹H NMR (CDC1₃, 240 MHz, TMS, δ = 0) 1.55 (3H, d, J = 7 Hz, CH₃CH), 2.0 (3H, s, CH₃-N-4), 2.95 (H_A, dd, J_{AB} = 12 Hz, $J_{AX} = 4$ Hz, $C_{H_2} - C = 0$, 3.15 (H_B, dd, $J_{AB} = 12$ Hz, $J_{BX} = 4$ Hz, $C_{H_2} - C = 0$), 3.95 $(3H, s, N-l-CH_3), 4.35 (1H, s, H-5).$
- 12. In particular,the absence of an indole β proton ('H NMR) and the quaternisation of the indole β carbon during the reaction (¹³C NMR) evidenced cyclisation onto the indole nucleus. An alternative cyclisation possibility was attack of the oxygen of the enol form of the a-acylindole onto the iminium salt cf Ref. 1.

(Received in France 7 March **1980)**